人工智能,如何妙笔“生”画******
核心阅读
输入一段话,“绘”出一幅画——人工智能的绘画本领,吸引众多职业画师和零基础用户尝鲜。人工智能绘画的本质是计算,接受“语言描述”指令后根据自身的理解还原出图像。未来,人工智能技术应用于艺术创作等领域,还要注意防范潜在风险,让技术进步更好地造福社会。
不用画笔、颜料,输入一段描述性文字,计算机就能自动解析,生成相应的画作。2022世界人工智能大会上,人工智能绘画的展示令观众惊叹。
一些过去专属于人类创作的领域,比如绘画、书法、写作、作曲,如今人工智能也已开始涉足。人工智能是如何绘画的?当前沿技术与艺术相遇,将碰撞出怎样的火花?在内容、版权等方面又是否存在问题?
从文本到图像,人工智能绘画本质是计算
人工智能绘画是一个从文本到图像的生成过程,输入一段话,生成一幅画,本质是计算。简要地说,计算机通过大量学习,能识别特定图片元素和文本之间的关联。同理,人工智能程序在收到“语言描述”指令后,可以根据自身的算法还原出图像。
设定计算机程序作画的想法由来已久。早在20世纪70年代,就有艺术家开发了操作机械臂的电脑程序,让机械臂按照指令在画纸上作画。近些年,人工智能技术日新月异,科研人员尝试设计自动作图的计算机程序。但过去很长一段时间,人工智能“画”出的作品普遍不够好,往往只是一些模糊的图像元素的组合,还称不上是完整的画。
今年以来,人工智能画技迅速“进化”。谈及技术突破原因,百度文心一格总架构师肖欣延认为,这是预训练大模型的兴起、大数据的训练和扩散模型的出现3方面共同作用的结果。
具体来说,预训练大模型增强了人工智能的通用性,成为人工智能技术及应用的新基座;大数据的训练中,通过在众多高性能GPU(图形处理器)算力资源中进行并行学习,计算机能够在短时间内完成大量的数据学习。近年来,几乎所有人工智能的技术发展都受益于这两方面的进展。而对人工智能绘画来说,扩散模型的出现至关重要。
扩散模型的原理是,通过人为逐步添加噪声,让图像逐渐变“模糊”,再不断学习去噪过程,如此人工智能就能从完全是噪声的图片中逐渐还原出清晰的图片,即“画”出图像。
“这一过程与人类学习相似。通常,人们学画从临摹开始,机器也是如此。它最初生成的图像可能很模糊,但计算机会不断修正,从而输出越来越清楚、层次越来越丰富的图像。”肖欣延说。
扩散模型让人工智能绘画技术实现跨越,不仅作画质量快速提升,生成时间也缩短到几秒钟。
众多用户尝鲜,大量应用加速“画技”进化
汤林杰是某互联网公司的运营人员。工作中,他需要借助一些图片来丰富文案,而网络上找到合适的配图并不容易。今年10月,了解人工智能绘画程序后,他尝试自己“画”图。现在,人工智能绘画工具已经是他工作的重要辅助。
随着算法模型对公众开放以及训练数据成本的下降,人工智能绘画门槛越来越低,一些简易化操作平台在国内外兴起。如今,不仅一些职业插画师尝试用人工智能绘画程序辅助作画、激发灵感,许多没有绘画基础的用户也开始尝鲜,并“晒”在社交平台上。
大量需求的涌现也加速了技术的更新迭代。“用人工智能绘画的人越多,算法就越能理解输入的描述文本,画作质量就越高。”肖欣延表示,当前人工智能绘画水平与今年初相比,已经有很大进步。
不过,目前的人工智能绘画技术并不完美。首先,可控性仍然不高,即计算机不能很好理解人类指令的含义,即便是输入“画两个苹果,左边红色,右边绿色”这样的简单描述,生成的图像也可能有很大偏差;其次,细节呈现能力还不够。比如,对空间、透视和光影的刻画就很不如意。不少人工智能渲染出的画作,初看上去惊艳,认真观察问题却不少。
但肖欣延认为,人工智能绘画在技法上的缺陷未来有望得到弥补。比如,基于跨模态大模型和强大的深度学习框架,百度开发的技术一定程度上已经缓解这些问题。此外,未来人工智能不仅能作画,还能根据文本描述生成视频,并直接配上解说文字,“可以把视频生成看作是维度更高的绘画,从技术层面看,这是可以实现的。”
防范潜在风险,守住法律和伦理底线
人工智能进入绘画领域,计算机会取代人类画师吗?
在肖欣延看来,好的绘画与构图、设计语言、视觉情绪息息相关,即使人人都可以用人工智能技术作画,但通常只有高水平的画师才能制作出优秀的人工智能绘画作品,“人工智能只是作画的辅助工具”。此外,虽然有的人工智能绘画语言娴熟,也包含细腻的情感,但并不意味着机器有意识、情感,它不过是学过类似的作品,又恰好呈现出来了。“优秀的艺术作品往往是人的思想的投射,目前机器并没有真正具备思考能力。”肖欣延说。
不少业内人士认为,不妨以开放的心态拥抱人工智能绘画,接受新事物。可以预想,将来绘画中一些繁琐、重复性的工作可能由计算机完成,创作者能腾出更多时间去构思想法与创意,调整构图、色彩、光影氛围等。
“人工智能可能会激发绘画创造的活力。”肖欣延表示,20世纪前后,照相技术让传统肖像画失去市场,促使一些画家向非写实方向创新。与人工智能技术融合,或许能激发画家创作出别开生面的作品。
不过,由于人工智能绘画发展刚刚起步,技术发展也引发关于版权、内容把控等问题的争议。比如,有人认为,未经授权人工智能画作模仿原画的内容、构图和风格等,侵犯了原作者的版权,有违法嫌疑。也有人认为,“机器学习”过程是一种类人化的创作行为,同样体现了创造者的思想和劳动,应当获得版权保护。此外,还有人担忧,人工智能绘画技术若被滥用,可能滋生暴力等令人不适的图像。面对新技术发展,有必要前瞻潜在的风险,只有守住法律和伦理底线,技术进步才能更好地造福社会。
不只是绘画,写作、作曲、生成短片,人工智能日益强大的深度学习能力,让它与不同艺术门类发生着奇妙的碰撞。展望未来,业界专家认为,人工智能与艺术融合,一方面会降低一些艺术门类的创造门槛,让更多人参与到当代的审美创造中来;另一方面新技术会带来新的审美风格,人们或许能从中扩展对自身和世界的认识。
记者 喻思南
AI创新链产业链融合发展 赋能数字经济新时代《中国人工智能专利技术分析报告(2022)》发布******
2022年12月,国家工业信息安全发展研究中心、工信部电子知识产权中心发布《AI创新链产业链融合发展赋能数字经济新时代—中国人工智能专利技术分析报告(2022)》,这是中心连续第5年就中国人工智能专利技术发展情况发布报告。
在新一轮科技革命和产业变革的大背景下,人工智能创新链产业链“双链”融合是释放数字化叠加倍增效应、驱动数字经济智能化跃升、打造产业综合竞争优势的必然路径。《报告》基于人工智能高价值专利增强创新链活力和助力产业链升级的角度,对深度学习、智能云、计算机视觉、智能语音、自然语言处理等十大技术领域进行专利申请趋势和分布构成分析,从“创造力”“保护力”“运用力”“竞争力”“影响力”五大方面对人工智能创新主体进行专利创新评价,研究人工智能专利如何高效助力各类“智慧+”应用场景落地,并对未来新兴人工智能技术应用和专利布局趋势作出研判。
图1 人工智能创新链产业链融合发展图谱
《报告》对人工智能高价值专利如何为创新链产业链融合发展保障护航进行了定量和定性分析。从行业公认的能够直观体现高价值专利的几个因素来看,自2011年、2012年开始,人工智能领域的中国专利奖占比逐年提高、专利许可转让数量呈上升趋势、专利诉讼遍及多个应用场景,展现了高价值专利对技术产业应用相辅相成的走势。
十大基础技术领域的专利数量稳步增长,极大激发AI创新链活力。深度学习、智能云、计算机视觉、智能语音、自然语言处理、大数据、知识图谱、智能推荐、智能芯片、量子计算等智能技术构成了人工智能创新链技术底座,也是产业链应用的基础技术。在技术与政策双红利的推动下,2016-2021年深度学习专利申请年均复合增长率达到53%,对人工智能的引领作用开始逐步凸显;相比之下,智能语音、自然语言处理、大数据、知识图谱和智能推荐领域的专利申请呈现稳步增长的态势,其中2021年自然语言处理的专利申请量仅次于深度学习、智能云和计算机视觉,发展势头强劲;智能芯片和量子计算由于起步相对较晚,相关专利储备较少,仍处于技术加速积累的阶段。国内创新主体也纷纷展开专利布局,不断增强市场竞争实力。例如百度公司在深度学习、智能云和智能驾驶等多个领域继续保持领先优势,寒武纪、浪潮和华为在智能芯片领域展现了充分的专注度和科研实力,清华大学、浙江大学等高校也在计算机视觉和自然语言处理等领域投入更多研发资源,成为基础攻关的重要力量。
图2 AI创新链十大基础技术专利申请趋势和分布构成
AI创新主体展现积极创新面貌,中小企业为产业发展增添新力量。从创新主体的申请量排名上看,百度、腾讯、国家电网、华为位列前四,专利申请数量均突破10000件,是我国AI领域技术创新的主力军。从专利授权量上看,仍然是上述四家企业位居前列,且百度公司专利申请量和授权专利持有量均排名第一。此外,腾讯专利2017-2020年腾讯专利申请年均复合增长率高达70%,在AI领域前四创新主体中申请量增速排名第一。从授权专利占比上看,申请量排名第七的清华大学和第九的浙江大学,均以45%的授权专利占比排名前两位。作为技术创新的重要源泉和吸纳劳动力就业的重要载体,大量中小企业也积极涌入人工智能赛道,在创新链一侧,我国人工智能领域企业主体共申请专利超过110万件,中小企业专利贡献超过90%。从产业链看,AI技术在中小企业中的普及率超过40%,语音识别、智能制造等技术在中小企业应用广泛,助力中小企业升级改造和智能化应用。
图3 创新链前十创新主体专利申请量和授权量
AI核心技术领域高价值专利集聚明显,产学研合作稳步推进。当前,智能云和深度学习是高价值专利数量最多的两个领域,百度得益于更早地投入与布局,展现专利申请数量与质量同步提升的发展态势。其他创新主体也结合自身业务发展方向,在不同的基础技术领域进行了有针对性的布局,如国家电网在深度学习和大数据领域,浪潮集团在智能云,阿里巴巴在智能推荐,平安科技在自然语言处理和计算机视觉都保持着创新优势。高等院校在人工智能领域技术创新活跃,涌现了大量专利成果,并通过与企业成立联合实验室和技术研发中心等方式,加快产学研用协同创新进程。截至2022年9月,我国人工智能领域产学研联合申请专利数量超2万余件,其中发明专利占比约90%,整体呈上升趋势增长,产业应用较为广泛。
图4 中国AI创新主体高价值专利技术布局
图5 AI领域产学研联合申请专利发展趋势图
AI专利助力新兴应用场景落地,推动产业链转型升级。目前,人工智能创新链的产业化应用主要集中在智慧城市、智慧交通、智慧医疗、智慧金融、智慧工业和智慧教育等领域。从技术应用的成熟度来看,不同AI技术在不同场景的应用呈现出阶梯式发展的态势。智慧工业是当前各创新主体主要布局的技术应用场景,AI专利申请量达到65万余件,其次就是智慧金融,专利申请量为30万余件。其中也涌现出“海淀城市大脑”“灵医智惠AI医疗品牌”“智慧交通解决方案TrafficGo2.0”“普惠金融人工智能开放平台”等众多优秀实践案例,推动高端智能技术与行业的融合发展。
“智慧+”场景应用创造出更多产业增长点,新兴人工智能技术生成数字经济发展新动能。AI在城市、交通、医疗、教育及工业等场景的融合应用加速,不断催生新业态新模式新产业。以智慧工业为例,将工业互联网、人工智能等在内的智能制造新技术与工具,集成到工业生产流程中,正在引领我国工业数字化新生态。报告显示,截至2022年9月,我国智慧工业领域申请专利共计65万余件。百度公司以近9000件专利总数位居第一,国家电网位居第二,其余创新主体专利申请量差距不大,发展潜力较强,各创新主体在智慧工业领域的专利布局积极竞争,难以拉开较大差距。与此同时,基于人工智能的深度学习、内容生成,语音、视觉识别技术越来越成熟,以元宇宙和数字人技术为代表的新兴技术,也迎来了专利的快速积累阶段,百度、腾讯、华为等企业积极开展前沿专利布局,探索人机交互发展和应用,助力数字经济高质量发展。
图6 中国元宇宙专利主要申请人排名
图7 中国数字人专利技术申请-公开趋势
《报告》结合当前人工智能知识产权生态建设和全产业链专利布局情况,对产业高质量可持续发展提出总结与展望。人工智能是新一轮科技革命和产业变革的重要驱动力量,发展人工智能是支撑科技自立自强、实现高质量发展的重要战略。党的二十大报告提出,推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎。当前,人工智能技术与5G、云计算、大数据的融合发展已将成为推动数字经济发展的动能源泉,今后将进一步与其他数字技术相互碰撞出全新的科技驱动力。随着人工智能创新发展跨入新的历史阶段,专利申请总量突破百万件,专利申请趋势仍在快速增长,技术人才规模不断扩大,产业融合广泛深入,应当在底层关键技术突破、建设知识产权生态、大中小企业共同完善专利布局、开辟更广泛应用场景等方面发力,实现创新链与产业链的协同发展。